首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1198篇
  免费   33篇
  国内免费   2篇
化学   1038篇
晶体学   13篇
力学   14篇
数学   35篇
物理学   133篇
  2023年   7篇
  2022年   4篇
  2021年   8篇
  2020年   10篇
  2019年   18篇
  2018年   13篇
  2017年   13篇
  2016年   14篇
  2015年   28篇
  2014年   18篇
  2013年   55篇
  2012年   46篇
  2011年   54篇
  2010年   37篇
  2009年   43篇
  2008年   106篇
  2007年   79篇
  2006年   89篇
  2005年   73篇
  2004年   81篇
  2003年   71篇
  2002年   64篇
  2001年   28篇
  2000年   15篇
  1999年   17篇
  1998年   6篇
  1997年   6篇
  1996年   13篇
  1995年   8篇
  1994年   11篇
  1993年   12篇
  1992年   11篇
  1991年   7篇
  1990年   9篇
  1989年   7篇
  1988年   6篇
  1987年   5篇
  1986年   7篇
  1985年   23篇
  1984年   25篇
  1983年   5篇
  1982年   11篇
  1981年   9篇
  1980年   5篇
  1979年   8篇
  1978年   8篇
  1977年   5篇
  1976年   12篇
  1974年   4篇
  1973年   8篇
排序方式: 共有1233条查询结果,搜索用时 176 毫秒
1.
Since the global peptide drug market demand has been predicted to increase, highly efficient and inexpensive mass scale peptides are required. However, the production process raises questions about the cost of energy input, scale-up production, raw materials, and solvents treatment. This paper introduces 2 methods for the 2–4 mer oligopeptides bond formation for batch reaction utilizing 50–100 mol% of a mild Brønsted acid under the mild condition. One of the methods has been capably adapted to flow synthesis at room temperature using organic solvents with boiling points below 100 °C. The method applies the tert-butoxycarbonyl amino methoxy group, forming the desired dipeptide without solvent at mild temperatures. Furthermore, the conversion of the carboxylic acid leaving the group to phenyl ester promotes peptide bond formation, and the reaction were applied to di, tri, and tetrapeptide bond formation in excellent yield without notable racemization at ambient temperature (up to >99 % yield and 99 : 1 dr). Finally, this study proposes this new production method to overcome the limited scale-up production by reaction device scale: liquid phase biomimetic catalytic peptide flow synthesis utilizing a mild Brønsted acid.  相似文献   
2.
Corrective matrix that is derived to restore consistency of discretization schemes can significantly enhance accuracy for the inside particles in the Moving Particle Semi‐implicit method. In this situation, the error due to free surface and wall boundaries becomes dominant. Based on the recent study on Neumann boundary condition (Matsunaga et al, CMAME, 2020), the corrective matrix schemes in MPS are generalized to straightforwardly and accurately impose Neumann boundary condition. However, the new schemes can still easily trigger instability at free surface because of the biased error caused by the incomplete/biased neighbor support. Therefore, the existing stable schemes based on virtual particles and conservative gradient models are applied to free surface and nearby particles to produce a stable transitional layer at free surface. The new corrective matrix schemes are only applied to the particles under the stable transitional layer for improving the wall boundary conditions. Three numerical examples of free surface flows demonstrate that the proposed method can help to reduce the pressure/velocity fluctuations and hence enhance accuracy further.  相似文献   
3.
Gold nanoparticles with different mean sizes were formed on antimony-doped tin oxide nanocrystals by the temperature-varied deposition-precipitation method (Au/ATO NCs). Au/ATO NCs possess strong absorption in the near-infrared region due to Drude excitation in addition to the localized surface plasmon resonance (LSPR) of AuNPs around 530 nm. Au/ATO NCs show thermally activated catalytic activity for the oxidation of cinnamyl alcohol to cinnamaldehyde by hydrogen peroxide. The catalytic activity increases with a decrease in the mean Au particle size (dAu) at 5.3 nm≤dAu≤8.2 nm. Light irradiation (λex >660 nm, ∼0.5 sun) of Au/ATO NCs increases the rate of reaction by more than twice with ∼95 % selectivity. Kinetic analyses indicated that the striking enhancement of the reaction stems from the rise in the temperature near the catalyst surface of ∼30 K due to the photothermal effect of the ATO NCs.  相似文献   
4.
At the redox-active center of thioredoxin reductase (TrxR), a selenenyl sulfide (Se−S) bond is formed between Cys497 and Sec498, which is activated into the thiolselenolate state ([SH,Se]) by reacting with a nearby dithiol motif ([SHCys59,SHCys64]) present in the other subunit. This process is achieved through two reversible steps: an attack of a cysteinyl thiol of Cys59 at the Se atom of the Se−S bond and a subsequent attack of a remaining thiol at the S atom of the generated mixed Se−S intermediate. However, it is not clear how the kinetically unfavorable second step progresses smoothly in the catalytic cycle. A model study that used synthetic selenenyl sulfides, which mimic the active site structure of human TrxR comprising Cys497, Sec498, and His472, suggested that His472 can play a key role by forming a hydrogen bond with the Se atom of the mixed Se−S intermediate to facilitate the second step. In addition, the selenenyl sulfides exhibited a defensive ability against H2O2-induced oxidative stress in cultured cells, which suggests the possibility for medicinal applications to control the redox balance in cells.  相似文献   
5.
6.
7.
8.
Electrophilic halogenation is used to produce a wide variety of halogenated compounds. Previously reported methods have been developed mainly using a reagent‐based approach. Unfortunately, a suitable “catalytic” process for halogen transfer reactions has yet to be achieved. In this study, arylamines have been found to generate an N‐halo arylamine intermediate, which acts as a highly reactive but selective catalytic electrophilic halogen source. A wide variety of heteroaromatic and aromatic compounds are halogenated using commercially available N‐halosuccinimides, for example, NCS, NBS, and NIS, with good to excellent yields and with very high selectivity. In the case of unactivated double bonds, allylic chlorides are obtained under chlorination conditions, whereas bromocyclization occurs for polyolefin. The reactivity of the catalyst can be tuned by varying the electronic properties of the arene moiety of catalyst.  相似文献   
9.
Selective Michael reaction of organolithium reagents to supersilyl methacrylate is reported. The method was able to control a single and double Michael addition. The successful termination of the process using the supersilyl protecting group allows for the controlled, chemoselective, and diastereoselective Michael reaction.  相似文献   
10.
For self-interstitial atom (SIA) clusters in various concentrated alloys, one-dimensional (1D) migration is induced by electron irradiation around 300 K. But at elevated temperatures, the 1D migration frequency decreases to less than one-tenth of that around 300 K in iron-based bcc alloys. In this study, we examined mechanisms of 1D migration at elevated temperatures using in situ observation of SUS316L and its model alloys with high-voltage electron microscopy. First, for elevated temperatures, we examined the effects of annealing and short-term electron irradiation of SIA clusters on their subsequent 1D migration. In annealed SUS316L, 1D migration was suppressed and then recovered by prolonged irradiation at 300 K. In high-purity model alloy Fe-18Cr-13Ni, annealing or irradiation had no effect. Addition of carbon or oxygen to the model alloy suppressed 1D migration after annealing. Manganese and silicon did not suppress 1D migration after annealing but after short-term electron irradiation. The suppression was attributable to the pinning of SIA clusters by segregated solute elements, and the recovery was to the dissolution of the segregation by interatomic mixing under electron irradiation. Next, we examined 1D migration of SIA clusters in SUS316L under continuous electron irradiation at elevated temperatures. The 1D migration frequency at 673 K was proportional to the irradiation intensity. It was as high as half of that at 300 K. We proposed that 1D migration is controlled by the competition of two effects: induction of 1D migration by interatomic mixing and suppression by solute segregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号